
A Simplified Data Processing in MapReduce
P. Buddha Reddy
Assistant Professor,

Dept. of CSE,
Vardhaman College of Engineering,

Hyderabad, India

CH Sravan Kumar
Assistant Professor,

Dept. of CSE,
Vardhaman College of Engineering

Hyderabad, India

K. Srinivas
Assistant Professor,

Dept. of CSE,
Vardhaman College of Engineering

Hyderabad, India

Abstract – For processing and generating large data sets we
use MapReduce as a programming model and their associated
implementations. A map function is specified by a user to
generate a set of intermediate key/value pairs from processes
a key/value pair. The warehousing systems existing based
MapReduce are not specially optimized for time-based big
data analysis applications. Such applications have two
characteristics: 1) A continuously generated data are required
to be stored persistently for a long period of time; 2) A
processed data is used for applications in some time period,
for typical queries. For large Data loading and for a high
query execution are Time-based big data analytics is required.
The current Mapreduce based existing systems solutions do
not solve this problem, because of the two requirements are
contradictory

Keywords - MapReduce; Keys; Data;

I. INTRODUCTION
The computations on the data over the past five years, have
been greatly improved and hundreds of special-purpose
computations of raw data, such as crawled documents, web
request logs are used to compute various kinds of derived
data, such as the set of most frequent queries in a given
day, inverted indices, the number of pages crawled per
host. Such a computations are mostly straightforward. The
input data is usually large and the computations have to be
distributed across hundreds or thousands of machines in
order to finish in a reasonable amount of time. The
parallelizable issues of how to parallelize the computation,
distribute the data, and handle failures to the original
computation with large amounts of complex code to deal
with these issues.
The major design issues of Mastiff’s are as follows:
• Column-based query execution engine: Mastiff uses a late

materialization technique in its column-based
execution engine, which can significantly improve
query performance with the help of SLC-Store.

• Data storage structure: Mastiff uses an optimized column
group store structure, called SLC-Store, which
provides fast loading speed and high execution
performance for analytical queries.

• Optimized data scan method: Mastiff utilizes the Scan-
Map technique to avoid unnecessary data accesses
during a table scan by exploiting the information
stored in the light-weight helper structures.

• Light-weight helper structure: On the basis of SLCStore.
Mastiff uses both segment-level and page-level light-
weight helper structures to store properly chosen
statistical information, which can achieve the best
tradeoff between data loading and query execution.

Hadoop implementation is possible on Mastiff. Mastiff
converts all the SQL commands to MapReduce programs
and executes them on Hadoop. It is implementation based
on Hive, but it has significant extensions to implement the
above designs. We have conducted extensive experiments
with diverse workloads to compare Mastiff’s performance
with those of three widely-used systems [3] [4] [5].

II. DESIGN AND IMPLEMENTATION OF MASTIFF

A. Overview:
Mastiff architecture is as shown in Figure 1, implemented
over Hadoop, and interacts with Hadoop’s components
(e.g., HDFS and JobTracker) to accomplish data loading
and processing. Mastiff has three kinds of modules as
follows:
1) Data loading modules: Data loading in Mastiff can be

through either load servers or the Bulk Loader. Load
servers receive original data streams, convert them into
SLC-Store format, and build the helper structures for
each page and each segment1. The Bulk Loader is a
tool for loading data in batch

2) Metadata management module: The MetaStore server
maintains table schemas and column group
information including the number of column groups,
column names in each group, and the compression
algorithm for each group.

3) Query execution modules: The SQL Translator and the
Column Operator Rewriter are responsible for
translating an SQL query to one or several Hadoop
jobs. Then, the jobs are submitted to the JobTracker,
and are executed in the cluster.

P. Buddha Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1400-1402

www.ijcsit.com 1400

B. Data Store and Helper Structure
A designed data store over HDFS called Segment-Level
Column Group Store (SLC-Store), integrated with two
kinds of light-weight helper structures, to improve both
data loading speed and analytical query performance. In
Mastiff, first a table is horizontally partitioned into multiple
segments. Data is stored in each segment vertically and
partitioned into column groups, and column groups consist
of one or more columns. A single HDFS physically stores
each Mastiff table and an HDFS block is used to store each
segment. Segments are stored in column groups one by
one. A fixed size of a page is used to divide a segment and
each column group in the segment is stored in contiguous
pages.

C. Data Loading
The Mastiff data is loaded by a group of LoadServers. Until
memory buffer is full the data is not loaded into a load
server. Data disk will store all the buffered data as a whole
segment. Mastiff uses a pair of buffers to improve loading
speed, and avoids loading blocked during writing back the
buffer. First the buffered data is sorted with a key before
written back. The data of each column group are written
back to disk page by page. The size of the page is set as
128KB. If the compress option is set during data loading,
then each page is compressed before written back. Users
can configure the Mastiff, for the compression algorithm
used for each column group. Mastiff also provides the Bulk
Loader for data warehousing applications.

D. ScanMap
A ScanMap is used built for each column group in the filter
expression for a given query. A logical representation of
data is maintained that consists of array of entries, one
entry for each page in a column group. Each entry is a 3-
tuple: (PageID, RowRange, and ScanMode) [2].
There are three ScanModes:
• Rough: Some records in this page satisfy the filter

predicate and some not.
• Negative: None of the records in this page satisfy the filter

predicate. In Mastiff, the execution of a query begins
from TableScan Operator in the Map phase. The
ScanMaps for a query are generated at the beginning of
each Map task before TableScan Operators. With
ScanMaps, the pages marked as either Negative or
Positive do not need to be scanned. The difference
between the two modes is that the row ID range of
each Positive page needs to be passed to the
subsequent operators in the query plan, while each
Negative page is simply skipped. The pages marked as
Rough should be scanned so as to pick out the row IDs
that satisfy the filter predicates, and pass them to the
subsequent operators.

• Positive: All the records in this page satisfy the filter
predicate.

In the following subsections, we describe how to build the
ScanMap for each query.
1) Multi-Group ScanMaps: Multi-group ScanMaps is built
when the attributes in the filter expression of a query are

scattered in multiple column groups. First, we split such a
multi-group expression into multiple single-group
expressions, each as a child expression. Then, we build
each child expression’s ScanMap by using the
aforementioned method of generating single-group
ScanMap. Finally, the ScanMaps of all child expressions
are calibrated into the final ScanMaps. Since the pages in
different column groups contain different numbers of rows,
the calibration of the ScanMaps of different column groups
depends on the relationship of the pages, which must be
calculated before calibrating their scan modes. For two
column groups, there are four page relationships (Contain,
Equal, Intersection, and Disjoint), as shown in Figure 3.
During calibration, Mastiff traverses the ScanMaps of the
two column groups from their first pages, and calibrates the
scan mode of each page according to the relationships of
each pair of pages[2].
2) Single-Group ScanMap: For a single-group expression
where the attributes in the filter expression are all in the
same column group, Mastiff builds the ScanMap by
scanning the information in the page-level helper structure
of this column group. Mastiff computes the scan mode of
each page according to the operation type of the filter
expression. First, for comparison operations (>, <, =, <=
and >=), if both of the max and the min values of this page
satisfy the filter expression, the scan mode of this page is
set to Positive; if neither, it is set to Negative; otherwise, it
is set to Rough. Second, for logical operations (AND, OR
and NOT), recursive computing is needed. After the scan
mode of each child expression is computed, the scan mode
of this page is computed based on the results of all child
expressions. For AND, the scan mode of this page is set to
Positive if the results of all child expressions are Positive; it
is set to Negative if any child expression’s result is
Negative; otherwise, it is set to Rough. For OR, the scan
mode of this page is set to Positive if any child expression’s
result is Positive; it is set to Negative if the results of all
child expressions are Negative; otherwise, it is set to
Rough. For NOT, the scan mode of this page is set to
negative if the child expression’s result is Positive; it is set
to Positive if the child expression’s result is Negative;
otherwise, it is set to Rough. Third, for other operations
(e.g., a user defined function), the scan mode is set to
Rough, which means that this page needs to be scanned [2].
(1) For the case of PageA Contain PageB (Figure 3(a)), the
scan mode of PageB should be set to Negative, if the
operation is AND and the scan mode of PageA is Negative.
The scan mode of PageB should be set to Positive, if the
operation is OR and the scan mode of PageA is Positive.
Otherwise, their scan modes need not changing.
(2) For the case of PageA Equal to PageB (Figure 3(b)), the
scan mode of both pages should be set to Negative, if the
operation is AND and the scan mode of either page is
Negative. The scan mode of both pages should be set to
Positive, if the operation is OR and the scan mode of either
page is Positive. Otherwise, their scan modes need not
changing.
(3) For the cases of Intersection and Disjoint (Figure
3(c)/(d)), their scan modes need not changing.

P. Buddha Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1400-1402

www.ijcsit.com 1401

E. Column-Based Query Execution Engine
Hive is a widely-used query execution engine over Hadoop.
Although Hive can be configured to use row store or
column store (RCFile), its query execution engine can only
process data in a row-based manner and uses the early
materialization scheme. As the previous study showed [7],
early materialization could be inefficient for column stores
when the selectivity is low, because many tuples are
needlessly constructed, which results in many unnecessary
disk I/O. Since Mastiff uses a column store structure
(SLCStore) for on-disk data organization, a column-based
query execution engine which uses late materialization
scheme should be implemented to make full use of the
advantage of the column store [2].

IV. PERFORMANCE EVALUATION
A. Experiment Setup
1) Workloads
2) Test Platforms and Hadoop Configuration
3) Software Systems

HadoopDB
Mastiff
GridSQL

B. Performance Results of Data Loading
The Performance results of Data loading are as shown in
Fig 5 and Fig 6.

V. CONCLUSION
Mastiff called a Hadoop-based data management system
which is optimized for timebased data analytics. Mastiff
exploits a systematic combination of an optimized column
group store structure to achieve the goals of both high data
loading speed and high query execution performance. An
optimized data scan method and a column-based query
execution engine are the two kinds of light-weight helper
structures.

REFERENCES
[1]. Jeffrey, Dean., Sanjay, Ghemawat., “MapReduce: Simplified Data

Processing on Large Clusters” in OSDI.
[2]. Sijie, Guo., Jin, Xiong., Weiping, Wang., Rubao Lee., “Mastiff: A

MapReduce-based System for Time-based Big Data Analytics”,
IEEE International Conference on Cluster Computing, 2012.

[3]. http://sourceforge.net/projects/gridsql/.
[4]. He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.,

“Rcfile: A fast and space-efficient data placement structure in
mapreduce-based warehouse systems,” in ICDE, 2011.

[5]. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D. J., Rasin, A.,
Silberschatz, A., “Hadoopdb: An architectural hybrid of mapreduce
and dbms technologies for analytical workloads,” PVLDB, 2009.

[6]. http://wiki.apache.org/hadoop/FAQ.
[7]. Abadi, D. J., Myers, D. S., DeWitt, D. J., Madden, S.,

“Materialization strategies in a column-oriented dbms,” in ICDE,
2007.

P. Buddha Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1400-1402

www.ijcsit.com 1402

